
Experiments on the Evolution of Digital to Analog
Converters1

Ricardo Zebulum, Adrian Stoica, Didier Keymeulen

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

ricardo@brain.jpl.nasa.gov

1 1 0-7803-6599-2/01/$10.00 © 2001 IEEE

Abstract – Evolvable Hardware (EHW) applications have,
so far, encompassed the synthesis of standard analog and
digital circuits’ building blocks through Genetic Algorithms
(GAs). Currently, the research effort in EHW is being
driven towards twofold purposes: the synthesis of circuits of
medium to high complexity; and the design of
reconfigurable architectures that facilitate the system
evolvability and on-chip implementation of the evolved
circuits. This work addresses these issues by describing the
evolution of Digital to Analog Converters (DACs). We
investigate the efficiency of the evolutionary system when
using different representations and when evolving current
and voltage mode circuits. A new techinique based on
hierarchical evolution is devised to enhance the
evolutionary speed and the design scalability. New methods
to increase the competitiveness of the evolved designs are
also discussed.

 TABLE OF CONTENTS

1. INTRODUCTION
2. OVERVIEW OF EVOLVABLE HARDWARE
3. PROBLEM MODELING
4. EXPERIMENTS
5. LESSONS LEARNED
6. REFERENCES

1. INTRODUCTION

This work describes a set of experiments involving the
evolution of electronic circuits, particularly Digital to
Analog converters. Several important issues for EHW are
addressed by the experiments here presented, such as the
evolution on reconfigurable architectures models, different
modes of circuit operation, and the scalability of the results.

DACs have a widespread use in the area of digital audio,
where the digital information stored in the CD is converted
into music via high-precision converters. The synthesis of
DACs includes several requirements, such as speed,
linearity of the transfer curve, accuracy and resolution [1].
Most of the DACs presented in the literature are decoder
based, in which a string of resistors is used to generate 2N
reference signals, where N is the number of digital inputs
[2]. The digital input word is then used to select the
appropriate reference signal. The evolutionary approach for
circuit synthesis, on the other hand, usually explores
alternate ways to synthesize circuits that are rather different
from human designed ones.

The Field Programmable Transistor Array (FPTA) [3] is
used as a reconfigurable hardware model for some of the
evolutionary experiments. We contrast the results of
evolution when using the FPTA model and another
representation method previously presented in the
literature [4].

This paper is divided into the following contents: section 2
provides a brief overview of Evolvable Hardware. Section 3
describes the Genetic Algorithm (GA) modeling for the
DAC evolution. Section 4 depicts the experiments
performed, where we compare the performance of the
evolutionary system when using different circuit
representations, and also for voltage and current mode
circuits. Finally, section 5 concludes the work.

2. OVERVIEW OF EVOLVABLE HARDWARE

The conceptual birth of evolvable hardware was partially
inspired by search/optimization/adaptation mechanisms and
partially by the availability of reconfigurable devices such
as Field Programmable Gate Arrays (FPGAs) [5]. Circuits
can be evolved via reconfiguring programmable devices
(which is called intrinsic EHW) or via evolving software
models – descriptions of the electronic HW (referred to as
extrinsic EHW) [6].

Figure 1 illustrates the main steps of evolutionary design for
electronic circuits.

Evolutionary Algorithm
•

Response

evaluation
and fitnessTarget

response

Chromosomes

Reconfigurable
HW

101100110
011101011

Control
bitstring

Conversion
to a

circuit descripton
on

Circuit
responses

Extrinsic

cevolution

Intrinsic
evolution

Models
 of

circuitsSimulator
e.g.

SPICE

Figure 1- Evolutionary synthesis of electronic circuits

Each candidate circuit design is associated with a "genetic
code" or chromosome. The simplest representation of a
chromosome is a binary string, a succession of 0s and 1s
that encode a circuit. The first step of evolutionary synthesis
is to generate a random population of chromosomes. In the
case of extrinsic evolution, the chromosomes are then
converted into a model that gets simulated (e.g. by a circuit
simulator such as SPICE) and produces responses that are
compared against specifications. In intrinsic evolution the
chromosomes are converted into control bitstrings, which
are downloaded to program the reconfigurable device. The
configuration bitstring determines the functionality of the
cells of the programmable device and the interconnection
pattern between cells. Circuit responses are compared
against specifications of a target response and individuals
are ranked based on how close they come to satisfying it.

Many different trends can be currently identified in EHW
research: evolution of analog circuits [7], exploration of
device physics [8], fault tolerance experiments [9],
evolution of digital circuits [10], industrial applications
[11], and research on reconfigurable analog devices [12].

3. PROBLEM MODELING

The evolution of DACs has been reported before in [13]. In
this work, a 3 input bits DAC has been evolved using the
Genetic Programming (GP) evolutionary technique [7]. GP
allows a very flexible representation, in the sense that
circuits of different sizes and shapes can be sampled by
evolution. Particularly, Bennett et Al [13] used bipolar
transistors, resistors and capacitors as the components to be
manipulated by evolution. However, they needed to evaluate
around 45,000,000 individuals (population of 330,000
individuals sampled along 139 generations) to achieve the
solution. Another limitation of this experiment is the fact
that the solution can not be implemented in hardware,
because no integrated circuit model was employed to
generate the software simulation models.

The problem modeling refers to the circuit representation
and to the fitness evaluation function. This paper compares

two different representations, the first one allowing an
arbitrary pattern of interconnections among the components,
which we call gene based representation, and the second
one based on an existing reconfigurable chip.

The gene based representation establishes a straightforward
mapping between the electronic circuit topology and the
integer strings processed by the GA [4]. Each functional
block of the string, also called gene, states the nature, value,
and connecting points of a correspondent electronic
component, which may include resistors, capacitors, bipolar
transistors and MOS (Metal-Oxide-Semiconductor)
transistors.

Figure 2 depicts an example of this kind of chromosome-
circuit mapping for a common emitter amplifier. The
chromosomes are made up of genes, each of which encodes
a particular component. In the example of Figure 2, the
chromosome will consist of three genes. The gene
determines the nature, value and connecting points of the
related component. The total number of connecting points
is a parameter to be set in this representation. This
parameter is critical to the efficiency of the representation: if
too few connecting points are considered, the number of
possible topologies sampled by the evolutionary algorithm
will be limited; conversely, if too many connecting points
are considered, a higher number of non-simulatable
topologies (with floating components) will arise.
Additionally, each connecting point may be classified as
internal or external. While the former does not serve for
any special purpose, the latter is connected to one of the
following signals: power supply, ground, input signal or
probed output (Figure 2).

The advantage of this representation is its flexibility to map
circuits with arbitrary types of interconnections. However,
there is no integrated circuit model that support the
hardware implementation of the evolved solutions.

External points:
0,1,3,4.
Internal point: 2

Gene = [Connecting points, Component value,Component
nature]. The Component nature is given by:
0 = transistor; 1 = resistor; 2 = capacitor

Gene1 = [(3,4); 1k; 1]

~

Gene0= [(1,2); 1nF, 2]

Gene2 = [(3,2,0); - ; 0]

Vin

Out

1

 3

0

C=1nF

R = 1k

Power
Supply

4

4

2

Figure 2– Analog Circuit Representation.

The second representation utilizes a model for the
simulation of a reconfigurable transistor array, the Field
Programmable Transistor Array (FPTA). The FPTA is a
concept design for hardware reconfigurable at transistor
level. As both analog and digital CMOS circuits ultimately
rely on functions implemented with transistors, the FPTA
appears as a versatile platform for the synthesis of both
analog and digital (and mixed-signal) circuits. The
architecture is cellular, and has similarities with other
cellular architectures as encountered in FPGAs (e.g. Xilinx
X6200 family) or cellular neural networks. One key
distinguishing characteristic relates to the definition of the
elementary cell. The architecture is largely a “sea of
transistors” with interconnections implemented by other
transistors acting as signal passing devices (gray-level
switches) and integrated on a chip using 0.5-micron CMOS
technology. Figure 3 illustrates an FPTA cell consisting of 8
transistors and 24 programmable switches.

The status of the switches (ON or OFF) determines a circuit
topology and consequently a specific response. Thus, the
topology can be considered as a function of switch states,
and can be represented by a binary sequence, such as
“1011…”, where by convention one can assign 1 to a switch
turned ON and 0 to a switch turned OFF. Programming the
switches ON and OFF defines a circuit for which the effects
of non-zero, finite impedance of the switches can be
neglected in the first approximation.

S7
P1

S4

S1

P2

V +

S12

S5

P4

S14

S15

S22

N6

N 8

S24S23

N 7

S20

N5
S11

S18

S17

S6
S9

S8

S2

S3
P3

S13

S10

S16

S19
S21

V -

Figure 3 - Module of the Field Programmable Transistor
Array.

The advantage of this second representation is the
possibility of implementing in hardware the evolved
solutions. However, the amount of different topologies
potentially sampled by the GA is limited by the number of
switches.

The fitness evaluation function determines how good each
individual is considering a target to be achieved. In the case
of DACs, each circuit is evaluated using a SPICE transient
analysis. All the possible configurations of the input bits are
given as fitness cases to the circuit, following an up-counter

sequence. Figure 4 illustrates a typical response of a DAC
circuit.

Time

O
u

tp
u

t

0 2 4 6 8 10 12 14 16 18 20
-1.5

0

1.5

3

4.5

6

7.5

9

 Figure 4 – Response of a Digital to Analog Converter.

The response in Figure 4 shows some of the non-idealities
of DACs. The first one is the glitch problem, observed in
the transition 001 to 010. It is a transient behavior in the
output before it achieves the correct state. The second
limitation is the settling time . It can be seen in the graph of
Figure 4 that there is a time delay associated to the state
transitions. The settling time must be kept in a value much
lower than the signal frequency in order to be able to
reconstruct the waveform [14].

Typically, the fitness evaluation function is measured by the
weighted sum of the deviations between the desired and the
actual responses:

Fitness = ? wi |Oi – Ti| (1)

where Oi is the output sample at instant i, Ti is the associated
target, and wi is a weight. In this application, the weight
was set to one if the absolute of the error was less than 0.5V,
and 10 otherwise. This is the means whereby higher errors
can be heavily penalized [13].

4. EXPERIMENTS

In this section three experiments are described. The first
experiment employs the gene based representation for the
evolution of a DAC operating in the voltage mode. The
second experiment uses the FPTA model for the circuit
representation, and operation in current mode. In the third
experiment, the concept of hierarchical evolution is applied
to the synthesis of a 4 bit DAC.

4.1 – First Experiment

In a first experiment, we have used the gene based
representation to evolve a 3-bit DAC in voltage mode. Each
chromosome was made up of ten genes, which could encode
only for PMOS and NMOS transistors. In addition to
determining the topological connections of the components

glitch

 000
001

 010

100
 101

110

111

011

as illustrated in the previous sections, this representation
also allowed another degree of flexibility, to determine the
width (W) and length (L) of each transistor. Therefore,
besides evolving the DAC topology, the GA performed a
parametric optimization as well.

The parameters for the GA in the experiment were: 40
individuals, 100 generations, a crossover rate of 30% and
mutation rate of 8%.

Two outputs of the circuit were considered for evaluation:
the first one should provide the voltage variation resulting
from the two least significant bits (LSB), and the second
output must provide the voltage variation resulting from the
most significant bit (MSB). These two outputs must be
added to give the correct output for the 3-bit DAC. Figure 5
illustrates this concept. In this figure, d0, d1 and d2
represent the digital inputs, and Out1 and Out2 represent the
circuit outputs. This is a divide-and-conquer approach
devised to improve the performance of the evolutionary
system.

A critical problem in the performance evaluation refers to
the timescale in which the input bits change. If the timescale
is small (milliseconds or less), than we may evolve a
transient circuit, in which the transient response is correct,
but that achieves an erroneous permanent state. This
problem is depicted in Figure 6, which shows the results of
a DAC circuit evolved in a preliminary experiment. This
particular circuit was evaluated using a timescale of
milliseconds, but we can observe the change in behavior
when we increase the timescale: the final state reached for
the inputs 100 and 101, which appeared to be right in the
first simulation (graph A, spanning 20ms), is wrong in
reality (graph B, spanning 20 seconds). In order to
overcome this problem, in this new evolutionary experiment
each circuit was evaluated twice, using timescales of
milliseconds and seconds.

 Time (seconds)

O
u

tp
u

t
(V

o
lts

)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.6

1.2

1.8

2.4

3

3.6

4.2

4.8

 Time (seconds)

O
u

tp
u

t
(V

)

0 2 4 6 8 10 12 14 16 18 20
0

0.6

1.2

1.8

2.4

3

3.6

4.2

4.8

Figure 6 – 3-bit DAC evolution using a timescale of milliseconds (A) and the erroneous behavior of the circuit when tested
in a timescale of seconds (B).

Figure 7 depicts the schematic of the evolved circuit using
the new evaluation approach, and Figure 8 shows the
responses: the curves of the two outputs are shown in the
first graph, and the combined output is shown in the
second graph. In the circuit of Figure 7, the substrate of

NMOS transistors are connected to ground, and substrate
of PMOS transistors are connected to 5 Volts. The
evolved length and width of the transistors are given as
L/W in um.

(A) (B)

 Adder
Evolved
Circuit

d0

d1

d2

Out

Out1

Out2

Figure 5 – Divide and Conquer approach for the evolution of the Digital to Analog Converter.

Figure 7 – Evolved Digital to Analog Converter. Inputs are labeled as I0, I1 and I2. Outputs are labeled as Out1 and Out2.

 Time(Seconds)

O
ut

pu
t (

Vo
lts

)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

 Time (s)

O
ut

pu
t(V

ol
ts

)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.8

1.6

2.4

3.2

4

4.8

5.6

Figure 8 – Two outputs, LSB and MSB, of the evolved circuit in full lines and in traces respectively (A) and combined
output in full lines against target in traces (B).

 It can be seen from Figure 8.B that the evolved circuit
achieves a final response practically equal to the target for
each of the eight states. Nevertheless, the circuit suffers
from the glitch problem previously discussed.

4.2 – Second Experiment

The second experiment aimed to improve the evolvability
of the circuit.

A binary string was used to represent each individual,
mapping two cascaded FPTA cells (Figure 3). Two binary
inputs are applied to the circuit and a current is measured
at the output.

In order to facilitate the evolvability, we relaxed the
requirement of having a specific DC operating point for
each state of the converter. Instead, the fitness evaluation
function rewarded circuits presenting uniform stepwise
output. The following measure has been employed:

Fitness = < ? Ii > - K . MSE(? Ii , < ? Ii >) (2)

(A)

(B)

MSB

LSB

For each state transition i, we measure the gradient in the
current output ? Ii. The average <? Ii > and Mean Squared
Error to the average value, MSE(? Ii , < ? Ii >), are
computed over the three state transitions. The constant K
is a weighting factor determined by the user. This fitness
measure seeks to maximize the current gradient between
states, also keeping them uniform for all the transitions.
The fact that the circuit is operating in current mode
allows this degree of flexibility to be incorporated into the

fitness function. Instead of specifying the particular
values of the current at each state, only the shape of the
output is evolved.

The GA sampled only 30 individuals along 30 generations
to find a circuit, since this is a very simple task for
evolution. The evolved circuit is shown in Figure 9 and its
response is depicted in Figure 10.

Figure 9 – Two bit Digital to Analog Converter evolved in the second set of experiments.

Time (s)

O
ut

pu
t (

m
A

)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Figure 10 – Response of the circuit shown in Figure 9.
(Current in mA x Time in seconds).

Besides being a quick and easy task for the GA, the
evolution of current mode circuits facilitates the design
scalability. For instance, we can easily construct a 4-bit
DAC using the circuit of Figure 9 as a building block. As
shown in Figure 11, all that is needed is a pair of current
mirrors [1] with ratios of 1:1 and 1:4 respectively. Figure
12 shows the response of the 4-bit DAC.

00

01

10

11

Figure 11 – 4 bit DAC based on evolved building block
of Figure 9.

Time(s)

O
ut

pu
t(

m
A

)

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 12 – Output of the circuit shown in Figure 11.

4.3 – Third Experiment – Hierarchical Evolution

The third experiment also targeted the synthesis of a 4-bit
DAC. However, contrasting to the experiment shown
above, evolution will also assemble the building blocks.
In the circuit of Figure 11, human knowledge has been
used to achieve a 4 bit DAC using current mirrors and the
2-bit evolved DAC. This experiment allows evolution to
manipulate the building blocks, without human
intervention. The following building blocks are used:

?? Current mirrors of different gains (1/8, 1/4, 1/2,
1, 2, 4, 8);

?? The evolved 2-bit DAC of Figure 9.

This concept was first applied to evolve a 3-bit DAC.
Figure 13 depicts the evolved circuit and Figure 14 its
response.

We proceeded one step further to achieve the 4-bit DAC.
Evolution was now allowed to use the 3-bit DAC as a
building block, together with the current mirrors. Figure
15 depicts the evolved circuit.

The fitness described by equation (2) was also used in this
experiment. The graph of Figure 16 displays the fitness
along the 800 generations comprised by this experiment.

Figure 13 – Evolved 3-bit DAC without human
intervention. In3 is the MSB.

Time(s)

C
ur

re
nt

(A
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.0004

0.0008

0.0012

0.0016

0.002

0.0024

0.0028

Figure 14 – Output of the circuit shown in Figure
13.

We remark that, since evolution now manipulates high
level building blocks, it is not necessary to use SPICE to
simulate the circuits generated by the evolutionary
process. The DC operating point of each building block
has already been defined, and their behavior can be
simulated using a high level description language, such as
C. The main advantage of this procedure is the dramatic
speed up in evolution time, taking less than one minute in
a SPARC Ultra 2 Sun workstation.

Figure 16 – Fitness behavior in the 4-bit DAC
evolutionary experiment.

Figure 17 shows the response of this circuit. One
performance criteria for DACs is the Differential
Nonlinearity (DNL)[1]. This statistics can be defined as:

DNLi = Incremental height of transition i – Ideal
Increment Height (3)

In this particular case, there are 15 transitions, hence 15
different DNL values. The ideal incremental height of
each transition is the LSB (Least Significant Bit) of the
data converter, which is around 1 mA in this case. The
graph of Figure 18 plots the DNL as a percentage of the
LSB for all the transitions. The worst case occurs at the
8th transition, in which the DNL is around 0.5 (50%
higher than the LSB). This transition is marked in the
graph of Figure 17.

Time (ms)

C
ur

re
nt

 (m
A

)

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04
0

2.5

5

7.5

10

12.5

15

17.5

Figure 17 – Response of the circuit shown in Figure 15.

Digital Input

D
N

L
(L

S
B

)

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 18 – DNL for the circuit shown in Figure 15.

In order to reduce the DNL, a parametric optimization has
been performed, by making slight changes in the
transistors sizes of the current mirrors. The response of
the new circuit is shown in Figure 19, and the DNL
statistics is shown in Figure 20. It can be observed that the
highest DNL is now only 0.11, compared to 0.5 in the
previous version of the circuit.

Generations

Fi
tn

es
s

0 80 160 240 320 400 480 560 640 720 800
-300

0

300

600

900

1,200

1,500

1,800

2,100

2,400

8th transition

Figure 15 – Evolved 4-bit DAC. In4 is the MSB, /In4 is the
complemented version of the MSB and the output is Iout.

 In4

/In4

Iout

Time (s)

C
ur

re
nt

(m
A

)

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04
0

2.5

5

7.5

10

12.5

15

17.5

Figure 19 – Response of the optimized version of the
circuit shown in Figure 15.

Digital Input

D
N

L
(L

S
B

)

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 20 – DNL for the optimized version of the circuit
shown in Figure 15.

Another performance statistics for DACs is the settling
time [14], which is the time between the switching of the
digital inputs of the converter and the time when the
output reaches its final value and remains within a
specified error band. The settling time must be faster than
the signal frequency in order to be able to reconstruct the
waveform. In this evolved circuit, the worst settling time
(0111? 1000 and 1111? 0000 transitions) was of 20ns;
hence this DAC can be used in applications involving
frequencies of up to 50 MHz.

The main advantages of this approach are the scalability
and the speed of evolution. Although we stopped at the 4-
bit DAC, we can scale up the process to include more bits
into the circuit input.

Up to some extent, this circuit still suffers from the glitch
problem observed in the first experiment. There is a glitch
in the transition 0111? 1000, too narrow that it does not
appear in the graphs. However, this glitch is much smaller
than the ones observed in Figure 8.

5. LESSONS LEARNED

The automatic synthesis through evolutionary means of
Digital to Analog converters has been demonstrated in
this paper. Two different representations were employed
for circuit evolution, the gene based and the FPTA
representation. While the former allows a more flexible
pattern of interconnections, circuits evolved using the
FPTA model can be implemented in hardware using an
existing reconfigurable chip. It has been observed that the
FPTA model provided better results for current mode
circuits, while the gene based representation produced
better results for voltage mode DACs.

A divide-and-conquer approach has been used to evolve a
voltage mode DAC. Two circuit outputs were sampled,
and later added in a post-processing stage. The steady
state response of the circuit is very accurate comparing to
the target, however the circuit suffers from glitch
problem.

It has also been verified that caution should be taken
referring to the timescale of the inputs. The circuits
should be tested in different timescales, to consider both
transient effects and the steady state response.

The last experiment consisted of the hierarchical
evolution of a 4-bit DAC. In this particular case, the
evolutionary system manipulated higher level building
blocks, such as the evolved 2-bit DAC and current mirrors
with different gains. The main advantages of hierarchical
evolution are the speed and scalability. Since the building
blocks can be described in a higher level description
language, SPICE simulations are not necessary, and the
evolution time drops to less than one minute. The design
can be scaled up if we use circuits evolved in previous
steps as building blocks for the next evolutionary step,
which encompasses the evolution of larger circuits. The
final 4-bit DAC obtained through this approach showed
good statistics in terms of differential non-linearity and
settling time.

The main problem of the evolved circuits is the glitches
observed in the state transitions. This same problem has
also been reported in [13], where GP is applied to evolve
a 3-bit DAC. In order to solve this problem, the authors of
the referred paper tuned the fitness function to sample the
so-called turn-defining points internally generated by
SPICE. Those are the regions where the glitches may
occur.

Our approach to overcome this drawback is to use the GA
to further optimize the transistors width and length of the
evolved topologies. This approach has been successfully
applied in this paper to improve the differential non-
linearity of the DAC circuit. In this new GA run, the
topology is kept fixed, enabling the GA to focus solely on
parametric optimization. Moreover, the fitness evaluation

function will be designed in such a way to explicit
penalize the glitches, by sampling the data points in the
state transitions.

Future experiments will include multi-objective
optimization, in order to provide circuits with superior
performance compared to the human designed ones. The
idea here is to decompose the fitness evaluation to
consider the following factors:

?? Transient response with a small time step,
minimizing glitches and settling time;

?? Steady state response;
?? Power dissipation;
?? and intrinsic noise.

There are many techniques proposed in the literature to
carry out multi-objective optimization. The Energy
Minimization technique [4] will be employed in these
new experiments. The main goal is to achieve low-power
and low-noise DACs of interest for aerospace systems.

6 - ACKNOWLEDGEMENT

The work described in this paper was performed at the
Center for Integrated Space Microsystems, Jet Propulsion
Laboratory, California Institute of Technology and was
sponsored by the Defense Advanced Research Projects
Agency and by the National Aeronautics and Space
Administration.

REFERENCES

[1] – R. Baker, H. Li, D. Boyce, “CMOS Circuit Design,

Layout, and Simulation”, IEEE Press, 1998.

[2] – D. Johns, K. Martin, “Analog Circuit Integrated

Design”, John Wiley & Sons, 1997.

[3] - R. Zebulum, A. Stoica and D. Keymeulen, “A

flexible model of a CMOS field programmable
transistor array targeted for hardware evolution”, Third
Int. Conference on Evolvable Systems: From Biology
to Hardware (ICES2000), Edinburgh, April 17-19,
2000, 274-283.

[4] - R. Zebulum, M.A. Pacheco, M. Vellasco, and H. T.

Sinohara, “Evolvable Hardware: Automatic Synthesis
of Analog Control Systems”. In IEEE Aerospace
Conference, Big Sky, Montana, March 14-25, 2000.
IEEE Press.

[5] – E. Sanchez, “Filed Programmable Gate Array

(FPGA) Circuits”, in Towards Evolvable Hardware:
The evolutionary engineering approach, pp. 1-18, E.
Sanchez and M. Tomassini (editors), Springer-Verlag
LNCS 1062, 1996.

[6] – A. Stoica, R. Zebulum, D. Keymeulen, Y. Jin, T.

Daud, “Evolutionary Design of Smart Analog Circuits”
to appear in the Proceedings of ANNIE’2000 (Smart
Enginering System Design), St. Louis, MO, Novenber
5-8, 2000.

[7] - J. R. Koza, F. H. Bennett III, D. Andre and M. A.

Keane, “Genetic Programming III – Darwinian
Invention and Problem Solving”, Morgan Kaufman,
San Francisco, 1999.

[8] – A. Thompson., P. Layzell., R. Zebulum,

“Explorations in Design space: Unconventional
Electronics Design Through Artificial Evolution”,
IEEE Trans. on Evolutionary computation, vol. 3, n. 3,
pp. 167-196, 1999.

[9] - D. Keymeulen, A. Stoica, R. Zebulum, “Fault-

Tolerant Evolvable Hardware using Field
Programmable Transistor Arrays”. In IEEE
Transactions on Reliability, Special Section on Fault-
Tolerant VLSI Systems, vol. 49, No. 3, 2000 Sept.
IEEE Press.

[10] – J. Miller, P. Thomson, “Aspects of Digital

Evolution: Geometry and Learning”, in Proceedings of
the Sec. Int. Conf. on Evolvable Systems. M.Sipper,
D.Mange and A. Pérez-Uribe (editors), vol. 1478, pp.
25-35, LNCS, Springer-Verlag, 1998.

[11] – T. Higuchi et al, “Real-World Applications of

Analog and Digital Evolvable Hardware”. In IEEE
Transactions on Evolutionary Computation, Vol.3, No.
3, September 1999. IEEE Press.pp.220-235.

[12] - A. Stoica, “Toward evolvable hardware chips:

experiments with a programmable transistor array”.
Proceedings of 7th International Conference on
Microelectronics for Neural, Fuzzy and Bio-Inspired
Systems, Granada, Spain, April 7-9, IEEE Comp Sci.
Press, 1999. pp 156-162.

[13] – F. H. Bennett III, J. R. Koza,, M. A. Keane, J. Yu,

W. Mydlowec, and O. Stiffelman, “Evolution by
means of genetic programming of analog circuits that
perform digital functions”. In Banzhaf, Wolfgang,
Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar,
Vasant, Jakiela, Mark, and Smith, Robert E. (editors).
1999. GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-17,
1999, Orlando, Florida USA. San Francisco, CA:
Morgan Kaufmann. Pages 1477 - 1483.

[14] – R. Mancini, C. Wray, “ Analog Electronics in a

Day”, WESCON’2000, Tutorial, September 19-21,
Anaheim, CA.

Dr. Ricardo Zebulum
Jet Propulsion Laboratory, M/S
303-300, California Institute of
Technology, Pasadena,
California, 91109 USA.
Email:
ricardo.zebulum@jpl.nasa.gov
Ricardo S. Zebulum is a post-
doc scholar at the Jet
Propulsion Laboratory, California Institute of
Technology. He received his Bachelor degree in
Electronic Engineering in 1992, his Msc. in Electrical
Engineering in 1995, and his PhD in Electrical
Engineering in 1999, all of them at the Catholic
University of Rio, Brazil. He stayed two years at Sussex
University, from 1997 to 1999, as a visiting PhD student.
He has been involved with research in Evolvable
Hardware since 1996. His research interests also include
artificial vision systems, fault -tolerant electronics, low
power electronics, MEMs, electronics for extreme
environments and analog VLSI design.

Dr. Adrian Stoica
Jet Propulsion Laboratory, M/S
303-300, California Institute of
Technology, Pasadena, California,
91109 USA.
Email: adrian.stoica@jpl.nasa.gov
Adrian Stoica is a Senior
Researcher in the Advanced
Computing Technologies Group
at NASA's Jet Propulsion Laboratory (JPL), Pasadena,
CA. He is leading the JPL research in Evolvable
Hardware. His current NASA/JPL projects are in the
areas of Evolvable Hardware, Sensor Fusion Hardware,
Rover Intelligence, and Robot Fostering. He is also the
Principal Investigator for the Evolvable Hardware for
Adaptive Computing project funded by DARPA. Dr.
Stoica's research is directed along two themes: adaptive
hardware for autonomous space systems, and next -
generation robots. Dr. Stoica received a M.S. degree in
Electrical Engineering from the Technical University of
Iasi, Romania, in 1986, and a Ph.D. in Electrical
Engineering and Computer Science from Victoria
University of Technology in Melbourne, Australia, in
1996. In 1999 he organized the First NASA/DOD
Workshop on Evolvable Hardware, initiating a series of
U.S. meetings dedicated to this field.

Dr. Didier Keymeulen;
Jet Propulsion Laboratory, M/S 303-
300, California Institute of
Technology, Pasadena, California,
91109 USA.
Email:
didier.keymeulen@jpl.nasa.gov
Didier Keymeulen received his PhD
in Electrical Engineering and
Computer Science from the Free
University of Brussels. Before joining JPL in 1998, he
worked at the National Electrotechnical Laboratory in
Japan on the applications of evolvable hardware for
robotics. At JPL, he is responsible for the applications of
evolvable hardware to fault-tolerant electronics and
adaptive sensor technology. His interests include adaptive
hardware for embedded systems.

